๐๐ก๐๐๐ค ๐๐จ๐ฎ๐ซ ๐๐จ๐๐๐ฅ: ๐๐ฌ ๐๐ญ ๐๐๐ญ๐ญ๐ข๐ง๐ ๐๐ญ ๐๐ข๐ ๐ก๐ญ, ๐จ๐ซ ๐๐ฎ๐ฌ๐ญ ๐ ๐๐ค๐ข๐ง๐ ๐๐ญ?โฃ
Training a machine learning model is like teaching a pet โ you want it to learn the right tricks without overdoing it or forgetting the basics! But how do you know if your model is truly learning meaningful patterns or just memorizing noise in the data?
Techniques like ๐๐ซ๐จ๐ฌ๐ฌ-๐ฏ๐๐ฅ๐ข๐๐๐ญ๐ข๐จ๐ง, ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฎ๐ซ๐ฏ๐๐ฌ, ๐๐ง๐ ๐๐๐ญ๐ข๐ฏ๐๐ญ๐ข๐จ๐ง ๐ฏ๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง๐ฌ help you quickly spot whether your model is ๐ฎ๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ , ๐จ๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ , ๐จ๐ซ ๐ฉ๐๐ซ๐๐๐๐ญ๐ฅ๐ฒ ๐๐๐ฅ๐๐ง๐๐๐. Letโs dive in and find out.โฃ
๐๐๐๐ก๐ง๐ข๐ช๐ฎ๐๐ฌ ๐ญ๐จ ๐๐๐๐ง๐ญ๐ข๐๐ฒ ๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ โฃ:
๐. ๐๐ซ๐จ๐ฌ๐ฌ-๐๐๐ฅ๐ข๐๐๐ญ๐ข๐จ๐งโฃ
๐๐จ๐ฐ ๐๐ญ ๐ช๐จ๐ซ๐ค๐ฌ:
Split your data into multiple folds, and train and evaluate the model on each fold.โฃ
๐ช๐ก๐๐ญ ๐ญ๐จ ๐๐จ๐จ๐ค ๐ ๐จ๐ซ:โฃ
Low performance across all folds โ ๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ .โฃ
High variance between folds โ ๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ .โฃ
๐๐ซ๐จ ๐๐ข๐ฉ: Use stratified k-fold for imbalanced datasets to ensure each fold represents the class distribution.โฃ
๐. ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฎ๐ซ๐ฏ๐๐ฌโฃ
๐๐จ๐ฐ ๐๐ญ ๐ช๐จ๐ซ๐ค๐ฌ:
Plot the modelโs performance (๐๐๐๐ฎ๐ซ๐๐๐ฒโ or ๐๐ซ๐ซ๐จ๐ซ-๐ฅ๐จ๐ฌ๐ฌโ) on both training and validation sets over time or as the training set size increases.โฃ
๐ช๐ก๐๐ญ ๐ญ๐จ ๐๐จ๐จ๐ค ๐ ๐จ๐ซ:โฃ
Training and validation performance stabilize at a low level โ๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ .โฃ
Large gap between training and validation performance โ ๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ .โฃ
๐. ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐ข๐ง๐ ๐๐๐ญ๐ข๐ฏ๐๐ญ๐ข๐จ๐ง๐ฌ (๐๐๐ฎ๐ซ๐๐ฅ ๐๐๐ญ๐ฐ๐จ๐ซ๐ค๐ฌ)โฃ
๐๐จ๐ฐ ๐๐ญ ๐ช๐จ๐ซ๐ค๐ฌ:
Analyze the activations of layers in a neural network to see if the model is learning useful features or overfitting to noise.โฃ
๐๐จ๐จ๐ฅ๐ฌ: TensorBoard, Grad-CAM, or activation heatmaps.โฃ
๐ช๐ก๐๐ญ ๐ญ๐จ ๐๐จ๐จ๐ค ๐ ๐จ๐ซ:โฃ
Uniform or uninformative activations โ ๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ .โฃ
Overly specific activations (memorizing noise) โ ๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ .โฃโฃ
๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ : ๐๐ฒ๐ฆ๐ฉ๐ญ๐จ๐ฆ๐ฌ ๐๐ง๐ ๐๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌโฃ
๐๐ฒ๐ฆ๐ฉ๐ญ๐จ๐ฆ๐ฌ:โฃ
1.Model performs well on training data but poorly on validation/test data.โฃ
2.High variance in cross-validation results.โฃ
๐๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌ:โฃ
1.๐๐๐๐ฎ๐๐ ๐๐จ๐๐๐ฅ ๐๐จ๐ฆ๐ฉ๐ฅ๐๐ฑ๐ข๐ญ๐ฒ:
Use fewer layers (neural networks) or fewer parameters (reduce tree depth in decision trees).โฃ
2.๐๐๐ ๐ฎ๐ฅ๐๐ซ๐ข๐ณ๐๐ญ๐ข๐จ๐ง ๐๐๐๐ก๐ง๐ข๐ช๐ฎ๐๐ฌ:โฃ
๐๐ (๐๐๐ฌ๐ฌ๐จ): Encourages sparsity and feature selection.โฃ
๐๐ (๐๐ข๐๐ ๐): Smooths weights to prevent over-reliance on specific features.โฃ
๐๐ซ๐จ๐ฉ๐จ๐ฎ๐ญ: Randomly drop units during training (neural networks).โฃ
3.๐๐๐ซ๐ฅ๐ฒ ๐๐ญ๐จ๐ฉ๐ฉ๐ข๐ง๐ : Stop training when validation performance stops improving.โฃ
4.๐๐๐ญ๐ ๐๐ฎ๐ ๐ฆ๐๐ง๐ญ๐๐ญ๐ข๐จ๐ง: Increase dataset size through transformationsโฃ
5.๐๐๐ญ๐๐ก ๐๐จ๐ซ๐ฆ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Normalize activations to stabilize training (neural networks).โฃ
6.๐๐ฌ๐ ๐๐ข๐ฆ๐ฉ๐ฅ๐๐ซ ๐๐จ๐๐๐ฅ๐ฌ: Switch to a less complex algorithm.โฃโฃ
๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ : ๐๐ฒ๐ฆ๐ฉ๐ญ๐จ๐ฆ๐ฌ ๐๐ง๐ ๐๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌโฃ
๐๐ฒ๐ฆ๐ฉ๐ญ๐จ๐ฆ๐ฌ:โฃ
Model performs poorly on both training and validation/test data.โฃ
Low performance across all cross-validation folds.โฃ
๐๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌ:โฃ
1.๐๐ง๐๐ซ๐๐๐ฌ๐ ๐๐จ๐๐๐ฅ ๐๐จ๐ฆ๐ฉ๐ฅ๐๐ฑ๐ข๐ญ๐ฒ: Add more layers (neural networks) or increase the number of parameters (increase tree depth in decision trees).โฃ
2.๐ ๐๐๐ญ๐ฎ๐ซ๐ ๐๐ง๐ ๐ข๐ง๐๐๐ซ๐ข๐ง๐ : Create new features or transform existing ones (polynomial features, interaction terms).โฃ
3.๐๐จ๐ซ๐ ๐๐๐ญ๐: Increase the number of data in the dataset.โฃ
4.๐๐ฒ๐ฉ๐๐ซ๐ฉ๐๐ซ๐๐ฆ๐๐ญ๐๐ซ ๐๐ฎ๐ง๐ข๐ง๐ : Adjust hyperparameters like learning rate, number of layers, or number of estimators.โฃ
5.๐๐ง๐ฌ๐๐ฆ๐๐ฅ๐ ๐๐๐ญ๐ก๐จ๐๐ฌ: Combine multiple models (bagging, boosting) to improve accuracy and handle complex relationships.โฃโฃ
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌ ๐๐จ๐ซ ๐๐จ๐ญ๐ก ๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ โฃ:
1.๐๐ฅ๐๐๐ง ๐๐๐ญ๐: Ensure the data is properly preprocessed, free from outliers, and representative of the problem space.โฃ
2.๐๐จ๐ฌ๐ฌ ๐ ๐ฎ๐ง๐๐ญ๐ข๐จ๐ง๐ฌ: Choose or modify loss functions to better suit the problem (focal loss for class imbalance, Huber loss for robust regression).โฃ
3.๐๐ก๐๐ง๐ ๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ: Experiment with different algorithms that might perform better for your specific problem.โฃ
โฃ
๐๐ข๐๐ฌ-๐๐๐ซ๐ข๐๐ง๐๐ ๐๐ซ๐๐๐๐จ๐๐: ๐๐ก๐ ๐๐ข๐ ๐๐ข๐๐ญ๐ฎ๐ซ๐โฃ
๐๐ง๐๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ โ ๐๐ข๐ ๐ก ๐๐ข๐๐ฌ: The model is too simple to capture the underlying patterns.โฃ
๐๐ฏ๐๐ซ๐๐ข๐ญ๐ญ๐ข๐ง๐ โ ๐๐ข๐ ๐ก ๐๐๐ซ๐ข๐๐ง๐๐: The model is too complex and memorizes noise instead of learning generalizable patterns.โฃ